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Abstract—Cooperative Co-evolutionary algorithms are effective 
approaches to solve large-scale optimization problems. The crucial 
challenge in these methods is the design of a decomposition method 
which is able to detect interactions among variables. In this paper, 
we proposed a decomposition method based on High Dimensional 
Model Representation (HDMR) which extracts separable and 
nonseparable subcomponents for Cooperative Co-evolutionary 
algorithms. The entire decomposition procedure is conducted 
before applying the optimization. The experimental results for 
D=1000 on twenty CEC-2010 benchmark functions show that the 
proposed method is promisingly efficient to solve large-scale 
optimization problems. The proposed approach is compared with 
two other methods and discussed in details. 

I. INTRODUCTION  
HE real-world optimization problems are faced with 

several challenging features, such as, landscape’s shape 
complexity, high dimensionality, nonlinearity, concavity, 

uncertainty, and expensive objective evaluation. Many 
metaheuristic algorithms have been proposed to tackle these 
kinds of problems. The performance of these algorithms 
severely deteriorates when the dimension of the search space 
increases. Cooperative Coevolution (CC) algorithms [1, 2] 
have been proposed to handle the problems with a large 
number of decision variables. These algorithms consider 
decomposition methods to tackle a high dimensional problem. 
In the classical CC method, a high-dimensional decision vector 
is divided into some low-dimensional subcomponents/vectors. 
The classical CC methods are inefficient for handling 
nonseparable problems since they do not take into account to 
identify the interactions among variables. In separable 
problems, there is no interaction among variables; therefore it 
is possible to decompose it easily into several low-dimensional 
subcomponents. But, the nonseparable problems consist of 
interacting subcomponent variables. The efficiency of the CC 
algorithms deteriorate when interacting variables are placed in 
different subcomponents, because the influence of a variable 
on the fitness value in one subcomponent depends on other 

variables in different subcomponents; and subcomponents 
cannot be evolved independently. The ideal grouping method 
in CC algorithms should decompose a high dimensional 
problem into several subcomponents such that the interactions 
among different subcomponents are minimal [3, 4]. It was 
shown that decomposition methods have a significant influence 
in the performance of the CC algorithms [3]. Therefore, the 
crucial challenge in the success of CC algorithms is developing 
a suitable decomposition method with a higher interaction 
recognition success rate. 

In recent years, several decomposition methods for the CC 
algorithms have proposed to identify interacting variables for 
constructing the subcomponents of a large-scale problem. Two 
major categories of these methods, in term of the variable 
grouping strategy, are static and dynamic decomposition 
methods. In the static decomposition methods, the associated 
variables to each subcomponent are kept fixed during the 
optimization process while in the dynamic decomposition 
methods, grouping changes during the optimization. 

The High Dimensional Model Representation (HDMR) 
[14, 15] is a general set of quantitative model assessment and 
analysis tool which has been introduced to capture high-
dimensional input– output system behavior. HDMR represents 
a map of the relationship between input and output system 
variables. Since the general assumption in the CC methods is 
that there is no available information about the problem (i.e., 
black-box function), it would be useful to obtain some 
significant knowledge of a problem via HDMR for discovering 
unknown better arrangement of subcomponents. 

In the paper, a new decomposition method for the CC 
algorithms is proposed based on HDMR method (DM-HDMR) 
which discovers nonseparable and separable subcomponents to 
improve the performance of CC algorithms. First, we 
approximate a black-box function using a RBF-HDMR 
approach, proposed by Shan and Wang [5], and then the 
interactions among variables based on the first order RBF-
HDMR are detected and the separable and nonseparable 
subcomponents are constructed. The DM-HDMR is tested on 
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20 high-dimensional (i.e., D=1000) benchmark functions. The 
obtained results indicate that the proposed approach is highly 
efficient.  

The organization of the rest of this paper is as follows. 
Section II presents a background review. Section III describes 
the details of the proposed decomposition method. Section IV 
presents the experimental results and discussion. Finally, the 
paper is concluded in Section V. 

II. BACKGROUND REVIEW 

A. Decomposition Methods 
Potter and De Jong [2] proposed two basic CC algorithms 

in 1994, they proposed the one-dimensional based strategy and 
splitting-in-half decomposition strategy. In one-dimensional 
based strategy, an n-dimensional problem is decomposed into n 
one-dimensional subcomponents. In each subcomponent, the 
fitness of an individual is computed by an n-dimensional vector 
which is constructed by this individual and the selected 
members of other subcomponents. In the second strategy, an n-
dimensional problem is decomposed into two n/2 
subcomponents. It was confirmed that the performance of CC 
algorithms depend on identifying interactions among variables 
and the efficiency of the methods drops when solving 
nonseparable problems [6]. 

Recently, a random decomposition method (DECC-G) was 
introduced by Yang et al. to handle the high-dimensional 
nonseparable problems (tested up to 1000D) [4]. In the random 
decomposition method, an n-dimensional problem is 
decomposed randomly into multiple low-dimensional 
subcomponents. They used an adaptive weighting strategy to 
obtain better solutions. When the number of interacting 
variables grows, the performance of DECC-G method 
decreases. In [7], a self-adaptive decomposition method 
(MLCC) was proposed. MLCC utilizes different 
subcomponent sizes of a decomposer pool to identify variant 
interaction levels. A drawback of MLCC is that the problem is 
decomposed into a set of equal size subcomponents.  

The correlation matrix based methods were proposed to 
form subcomponents [8, 9]. These algorithms calculate 
correlations among the variables in each generation and 
variables are placed in the separate subcomponents according 
to the computed correlations. In these methods, the huge 
computational resources are used and the nonlinear 
dependencies among the variables are not detected. In [10], the 
delta decomposition method was proposed in which a problem 
is decomposed based on the absolute amount of change in each 
dimension at two sequential cycles. When the problem includes 
multiple nonseparable components, the efficiency of this 
method deteriorates accordingly. Chen et al. [11] introduced a 
CC method with Variable Interaction Learning (CCVIL) to 
determine the structure of subcomponents and to adjust the 
component size. They incorporated a learning stage in CC 
algorithm which is capable to detect the interactions among the 
decision variables. In [12, 13] , the dependency identification 
(DI) techniques were proposed; they define an internal 
minimization problem according to the concept of partially 
separable function during the CC algorithm. Omidvar et al. [3] 

introduced an automatic decomposition approach (DECC-DG), 
differential grouping, based on the description of the partial 
separable functions. In DECC-DG method, the nonseparable 
subcomponents are identified in a pairwise fashion. A theorem 
is defined and proved to identify the interactions among two 
variables. This theorem shows that if the change in the 
objective function with respect to one variable depends on 
another variable, then two variables are nonseparable. 

B. High Dimensional Model Representation (HDMR) 
A general form of HDMR is given as follows [14, 15]: 
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where the component 0f  is a constant representing the zero-th 
order effect to )(xf ; the function )( ii xf  is a first order term 

giving the effect of variable ix  acting independently upon the 

output )(xf ; the function ),( jiij xxf  is a second order term 

describing the cooperative effects of the variables ix  and jx  

upon the output )(xf . The higher order terms reflect the 
cooperative effects of increasing numbers of input variables 
acting together to influence the output )(xf . 

We apply the RBF-HDMR which was recently introduced 
by Shan and Wang [5]. They used a type of RBF function 
which uses a sum of a thin plate spline function (the first term) 
and a linear polynomial )(xP (the second term) to 
approximate each component function in the special class of 
HDMR, i.e., Cut-HDMR. A general RBF-HDMR is given by: 
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kkk diji ,........2,1,...,, ααα are the coefficients of the 

expression and ( ) ( ) k
ij

kji
i

i xxxxxx
kk

,...,,,, 00  are the sampled 
points of input variables or the centers of a linear RBF 
approximation. They proposed strategies to save the cost of 
constructing higher order components in HDMR. In the second 
order RBF-HDMR model, there is a cooperative effect of the 
variables ix  and jx  if the first RBF-HDMR model passes 
through randomly selected points from the set of sampled 
points which used to construct the first-order component terms 

if  and jf . Base on the mentioned strategy, we proposed a 
new decomposition method by using the first RBF-HDMR 
model. 
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Fig. 1. The simplified flow of the DM-HDMR process 

 

III. PROPOSED DM-HDMR DECOMPOSITION METHOD 
A major challenge in CC methods is the design of a 

suitable decomposition method which can recognize 
interactions among variables [3, 12]. There are the drawbacks 
of existing research works in constructing separable and 
nonseparable subcomponents hence the essential requirement 
for the design of a decomposition strategy is desirable. In this 
paper, a decomposition method based on HDMR (DM-
HDMR) is proposed which is described as follows. Figure 1 
shows a simplified flow of the DM-HDMR process.  

The key feature of RBF-HDMR model is modeling high-
dimensional problems. We propose the idea of employing 
RBF-HDMR model to extract interactions among variables. 
Algorithm1 shows that how the RBF-HDMR model can be 
used to identify the interacting variables and to create the 
nonseparable and separable subcomponents. At the beginning 
of the DM-HDMR algorithm, the first-order RBF-HDMR 
model is computed based on the mentioned algorithm in [5]. 
The decomposition step starts by discovering interacting 
variables with the first variable and then its corresponding 
subcomponent is formed. In the DM-HDMR algorithm, two 
variables are recognized as nonseparable if for constructing the 
second-order RBF-HDMR model a cooperative effect of two 
variables is identified according to the Shan and Wang’s 
strategy. For variables ix  and jx , two points are randomly 
selected from a point set which is formed based on all sample 
values of the variables ix  and jx  for modeling the first-order 

term of components if  and jf .  

In the DM-HDMR algorithm, when an interaction among a 
variable with first variable is detected, this variable is placed in 
the first variable subcomponent and then it is removed from the 
set of all variables. This process is repeated for other remaining 
variables until there is no more variable left. A variable is 

recognized as a separable variable if there is no interaction 
among it with all remaining variables. 

 

Algorithm1: allgroups      decomposition (func, n) 
1. dims    {1,2,….,n} 
2. sep   {}   // contains all separable variables 
3. Allgroups          {}   

//contains all non-separable subcomponents 
4. Create the first RBF-HDMR(i.e., 
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according to Shang and Wang’ algorithm  
5. for  i ∈  dims  do 
6. group           {} 
7. for  j ∈  dims ∧  i ≠  j  do 
8. select a random point from the sampled set 

of points for constructing the first-order 
component term components fi and fj 

9. if (the first RBF-HDMR model does not 
pass through a selected random point)  
then 

10. group  group ∪  j 
11. end if 
12. end for 
13. dims         dims- group 
14. if  length (group)==1  then 
15. seps        seps ∪ group 
16. Else 
17. allgroups   allgroups ∪ { group } 
18. end if 
19. end for 
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A. Combining DM-HDMR Decomposition Algorithm 
with CC 

 
Algorithm 2 explains how the DM-HDMR decomposition 

algorithm is used in a CC framework. The basic CC framework 
[1, 2] is applied in this algorithm. In the first step, DM-HDMR 
constructs nonseparable and separable subcomponents. Then, 
all subcomponents are optimized in a round-robin fashion by 
Self-adaptive Differential evolution with neighbourhood search 
strategy (SaNSDE) [4]. 

 

IV. EXPERIMENTAL RESULTS  
The twenty benchmark functions are used to evaluate the 

performance of DM-HDMR method. These functions were 
provided by the CEC-2010 Special Session and Competition 
on LSGO [16]. In this benchmark test set, there are five types 
of functions: 

1- Separable functions (f1-f3) 

2- Single-group m-nonseparable functions (f4-f8) 

f4: Single-group Shifted and m -rotated Elliptic Function. 

f5: Single-group Shifted and m -rotated -rotated Rastrigin’s 
Function. 

f6: Single-group Shifted and m -rotated Ackley’s Function. 

f7: Single-group Shifted and m-rotated Schwefel’s Problem 
1.2 

f8: Single-group Shifted and m -rotated Rosenbrock’s 
Function.  

3- 
m
n

2
-group m -nonseparable functions (f9-f13) 

4- 
m
n

- group m -nonseparable functions(f14-f18) 

5- Nonseparable functions (f19-f20) 

Where n  is the dimensionality of the function and m  is the 
number of variables in each nonseparable subcomponent. 

 

A. Simulation Results  
Table I summarizes the experimental results for CCVIL, 
DECC-DG, and DM-HDMR methods. The grouping accuracy 
is computed similar to the research work [3] . It can be found 
that the decomposition accuracy for 12 out of 20 benchmark 
functions is 100%. In three fully separable functions (f1-f3), all 
variables are placed in a subcomponent. The DM-HDMR 
algorithm correctly recognized all the decision variables fully 
separable.  

 

 

 

Algorithm2: allgroups           decomposition (func, n) 
1. pop  initialize (popsize, n) 
2. groups           DG-HDMR(func, n) 
3. (best,best val)          evaluate(pop)  
4. for i    1 to max_cycle do 
5. for j       1 to length (groups) do 
6. index_subpop             groups[j] 
7. subpop  pop(: , index_subpop ) 
8. (subpop,new)          optimizer(best, subpop) 
9. pop(: , index_subpop )          subpop 
10. best         new  
11. end for 
12. end for 

 

In single-group m -nonseparable functions, the 
decomposition accuracy for 2 (i.e., f5, f6) out of these 5 
functions is 100%. On f7, the algorithm has obtained the 
nonseparable subcomponent approximately correct with little 
difference with the real nonseparable subcomponent while it 
only could not identify six nonseparable variables. For f4, 
identifying interactions among variables is poor and the 
algorithm cannot discover correctly nonseparable 
subcomponents. The nonseparable variables are found 
correctly in f8 but separable variables were misplaced. 

For the third type of benchmark functions (f9-f13), where 
there are 10 independent 50-nonseparable subcomponents and 
one separable subcomponent with 500 variables, the 
decomposition accuracy for 3 functions (f9,  f10, and f12) out of 
5 functions is 100%. The performance of DM-HDMR 
algorithm is significant on f11 and most nonseparable variables 
are discovered.For f13, the captured interacting variables are not 
correct. In fully nonseparable functions (f14-f20), it has the high 
performance for all functions except on f18 so that the accuracy 
of interacting variables is 100% for functions f14, f17, and f19-f20. 

We have also compared the performance of the DM-
HDMR algorithm with two other state-of-the-art methods, 
namely, CCVIL and DECC-DG methods. The results confirm 
that the CCVIL achieves better results than DM-HDMR and 
DECC-DG on f4 and f7. For f1, f2, and f5; CCVIL has the same 
results with DM-HDMR and DECC-DG while the 
performance of DM-HDMR and DECC-DG is better than 
CCVIL on other functions. The performance of DM-HDMR 
and DECC-DG deteriorates significantly on most Rosenbrock 
functions (f8, f13, f18) while DM-HDMR obtains the remarkable 
result on f20. Also, DM-HDMR and DECC-DG have the 
deficient result on f4 although the accuracy of DECC-DG is 
100% for constructing nonseparable subcomponent. On f11 and 
f16, DECC-DG outperforms DM-HDMR. Both DM-HDMR 
and DECC-DG algorithms have approximately same results on 
other functions. 

 
 

 
 

1288



 
 

TABLE I 
 NUMERICAL RESULTS OF DM-HDMR, DECC-DG, AND CCVIL 

THE SYMBOL ‘‡’ IS USED TO INDICATE WHICH ALGORITHMS HAVE THE SAME RESULT  
AND THE BEST VALUE IS FORMATTED IN BOLD.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fun Sep. 
Var.s 

Non-sep. 
Var.s 

Decomposition 
strategy 

# Captured 
Sep. Vars. 

# Captured 
Non-Sep.Var.s # FE 

f1 1000 0 
CCVIL 1000‡ 0‡ 69990 

DECC-DG 1000‡ 0‡ 1001000 
DM-HDMR 1000‡ 0‡ 516304 

f2 1000 0 
CCVIL 1000‡ 0‡ 69990 

DECC-DG 1000‡ 0‡ 1001000 
DM-HDMR 1000‡ 0‡ 567231 

f3 1000 0 
CCVIL 938 0‡ 1798666 

DECC-DG 1000‡ 0‡ 1001000 
DM-HDMR 1000‡ 0‡ 709487 

f4 950 50 
CCVIL 957 43 1797614 

DECC-DG 33 50 14564 
DM-HDMR 0 2 17642 

f5 950 50 
CCVIL 950‡ 50‡ 1795705 

DECC-DG 950‡ 50‡ 905450 
DM-HDMR 950‡ 50‡ 516300 

f6 950 50 
CCVIL 910 47 1796370 

DECC-DG 950‡ 50‡ 906332 
DM-HDMR 950‡ 50‡ 653926 

f7 950 50 
CCVIL 951 49 1796475 

DECC-DG 247 34 67250 
DM-HDMR 948 47 468479 

f8 950 50 
CCVIL 1000 0 69842 

DECC-DG 135 46 23608 
DM-HDMR 0 50 29099 

f9 500 500 
CCVIL 583 337 1792212 

DECC-DG 500‡ 500‡ 270802 
DM-HDMR 500‡ 500‡ 150445 

f10 500 500 
CCVIL 508 492 1774642 

DECC-DG 500‡ 500‡ 272958 
DM-HDMR 500‡ 500‡ 184431 

f11 500 500 
CCVIL 476 491 1774565 

DECC-DG 501 499 270640 
DM-HDMR 503 428 293933 

f12 500 500 
CCVIL 516 435 1777344 

DECC-DG 500‡ 500‡ 271390 
DM-HDMR 500‡ 500‡ 149824 

f13 500 500 
CCVIL 1000 0 69990 

DECC-DG 131 126 49470 
DM-HDMR 548 28 333903 

f14 0 1000 
CCVIL 150 719 1785975 

DECC-DG 0‡ 1000‡ 21000 
DM-HDMR 0‡ 1000‡ 24725 

f15 0 1000 
CCVIL 1000 0 1751241 

DECC-DG 0 1000 21000 
DM-HDMR 1 999 40163 

f16 0 1000 
CCVIL 1000 0 1751647 

DECC-DG 4 996 21128 
HDMR 6 950 98899 

f17 0 1000 
CCVIL 1000 0 1752340 

DECC-DG 0‡ 1000‡ 21000 
DM-HDMR 0‡ 1000‡ 23198 

f18 0 1000 
CCVIL 1000 0 69990 

DECC-DG 85 173 34230 
DM-HDMR 1 50 22952 

f19 0 1000 
CCVIL 1000 0 48212 

DECC-DG 0‡ 1000‡ 2000 
DM-HDMR 0‡ 1000‡ 8960 

f20 0 1000 
CCVIL 1000 0 1798708 

DECC-DG 42 82 22206 
DM-HDMR 0 1000 22823 

1289



Table II presents the detail of the subcomponents on a 
number of functions which are found by DM-HDMR. The 
Groups column presents a constructed nonseparable 
subcomponent by DM-HDMR. The Permutation Groups 
column shows permutation subcomponents (P1-P20) which 
includes indices of 50 randomly chosen dimensions and the 
next column beside it indicates the number of variables belong 
to each permutation subcomponent.  

Table III shows the experimental results for a cooperative 
co-evolution algorithm with DM-HDMR. The mean values and 
the standard deviation of best objective value of the 25 runs in 
each run at 6103× FEs per function. The experimental results 
were compared with the results of DECC-DG. The symbol ‘‡’ 
is used to indicate which both algorithms have same results and 
the best value is highlighted in bold.  

The results confirm that in fully separable functions class, 
the CC method with DM-HDMR gained much better results 
than DECC-DG on f1 and f2. The reason is that DM-HDMR 
can save a significant number of fitness evaluations in the 

decomposition step. On f3, both algorithms have the same 
results.  

In the second class, the CC method with DM-HDMR 
outperforms DECC-DG on f4-f6, while the results of DECC-DG 
are better than the CC method with DM-HDMR on f7-f8. In the 
third class (f9-f13), the performance of DM-HDMR is better 
than DECC-DG on f9-f10,f12-f13 although DECC-DG 
outperforms DM-HDMR on f11. In the fully nonseparable 
functions, DECC-DG outperforms the CC method with DM-
HDMR on f15-f17 while the results of the CC method with DM-
HDMR are better than DECC-DG on f18 and f20. The 
performance of both algorithms is the same on f14  and f19. It 
can be seen from Table III that DM-HDMR on f1-f2, f5-f6, f9-f10, 
and f12 outperforms DECC-DG because by saving the number 
of fitness evaluations in the decomposition step, DM-HDMR 
can use more significant number of fitness evaluations in the 
optimization stage. In the figure 2, the convergence plots for 
selected function indicated the behavior of both DM-HDMR 
and DECC-DG algorithms.   

 
 
 

TABLE II 
The nonseparable subcomponents are constructed by DM-HDMR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 

Func Groups Group 
Size 

Permutation 
Groups #var Func Groups Group 

Size
Permutation 

Groups #var 

f17 
 

G01 50 P9 50 

f4 
G01 998 

P1 48 
G02 50 P7 50 P2 50 
G03 50 P2 50 P3 50 
G04 50 P12 50 P4 50 
G05 50 P4 50 P5 50 
G06 50 P20 50 P6 50 
G07 50 P5 50 P7 50 
G08 50 P18 50 P8 50 
G09 50 P10 50 P9 50 
G10 50 P15 50 P10 50 
G11 50 P1 50 P11 50 
G12 50 P8 50 P12 50 
G13 50 P17 50 P13 50 
G14 50 P11 50 P14 50 
G15 50 P14 50 P15 50 
G16 50 P3 50 P16 50 
G17 50 P13 50 P17 50 
G18 50 P19 50 P18 50 
G19 50 P6 50 P19 50 
G20 50 P16 50 P20 50 

f11 

G01 43 P4 43 G02 2 P1 2 
G02 47 P6 47 

f10 

 

G01 50 P4 50 
G03 48 P3 48 G02 50 P6 50 
G04 46 P1 46 G03 50 P3 50 
G05 45 P5 45 G04 50 P1 50 
G06 37 P9 37 G05 50 P5 50 
G07 45 P2 45 G06 50 P9 50 
G08 27 P8 27 G07 50 P2 50 
G09 47 P7 47 G08 50 P8 50 
G10 39 P10 39 G09 50 P7 50 
G11 2 P8 2 G10 50 P10 50 
G12 2 P6 2 f5 G01 50 P1 50 
G13 2 P9 2 f6 G01 50 P1 50 
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TABLE III 
 COMPARISON OF CC METHOD WITH EMBEDDED DM-HDMR AND 

DECC-DG METHODS ON THE CEC-2010 BENCHMARK FUNCTIONS. 

Function DM-HDMR DECC-DG 

f1 
Mean 2.34e+01  5.47e+03 
Std 5.23e+01 2.02e+04 

f2 Mean 4.36e+03 4.39e+03 
Std 1.97e+02 1.97e+02 

f3 Mean 1.67e+01‡ 1.67e+01‡

Std 3.03e-01 3.34e-01 
f4 Mean 6.96e+11 4.79e+12 

Std 2.12e+11 1.44e+12 
f5 Mean 1.45e+08 1.55e+08 

Std 1.78e+07 2.17e+07 
f6 Mean 1.63e+01 1.64e+01 

Std 4.08e-01 2.71e-01 
f7 Mean 2.91e+05 1.16e+04 

Std 2.26e+05 7.41e+03 
f8 Mean 4.41e+07 3.04e+07 

Std 2.44e+07 2.11e+07 
f9 Mean 5.20e+07 5.96e+07 

Std 8.21e+06 8.18e+06 
f10 Mean 4.49e+03 4.52e+03 

Std 1.40e+02 1.41e+02 
f11 Mean 1.10e+01 1.03e+01 

Std 9.94e-01 1.01e+00 
f12 Mean 1.97e+03 2.52e+03 

Std 3.15e+02 4.86e+02 
f13 Mean 3.35e+06 4.54e+06 

Std 6.83e+05 2.13e+06 
f14 Mean 3.41e+08‡ 3.41e+08‡

Std 2.60e+07 2.41e+07 
f15 Mean 5.95e+03 5.88e+03 

Std 9.11e+01 1.03e+02 
f16 Mean 1.24e-06 7.39e-13 

Std 1.92e-06 5.70e-14 
f17 Mean 4.03e+04 4.01e+04 

Std 3.19e+03 2.85e+03 
f18 Mean 8.40e+03 1.11e+10 

Std 4.35e+03 2.04e+09 
f19 Mean 1.71e+06‡ 1.74e+06‡

Std 1.38e+04 9.54e+04 
f20 Mean 2.45e+06 4.87e+07 

Std 1.23e+07 2.27e+07 

V. CONCLUSION REMARKS 
In this paper, we proposed a decomposition method 

inspired from the High Dimensional Model Representation to 
discover the optimum grouping of the variables for dividing a 
high dimensional problem into low subcomponents. Significant 
information can be obtained by constructing the first order 
RBF-HDMR which is used to determine a cooperative effect of 
two variables then the separable and nonseparable 
subcomponents are recognized according to the detected 
cooperative effect among variables. The DM-HDMR algorithm 
suggests a promising idea for decomposition methods to handle 
large-scale problems within cooperative coevolution methods 
however the further study and more experiments are required 
to improve this decomposition method. The performance of the 
DM-HDMR algorithm is evaluated on the CEC-2010 
challenging well-known benchmark functions. The DM-
HDMR algorithm obtained comparable good results in the 
majority of functions. Also, a cooperative co-evolutionary 
framework with using DM-HDMR method was proposed for 
tackling large-scale optimization problems. Based on the 
achieved results, it can be concluded that the algorithm can 

efficiently solve large-scale optimization problems. In future, 
we intend to develop strategies based on HDMR to better 
divide the computational budget in a CC algorithm among 
subcomponents with respect the main effect of theirs variables 
on the fitness function. In addition, we are interested in 
applying DM-HDMR to more large-scale benchmark 
functions. 
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Fig. 2. Convergence plots of f1, f4, f9, f12, f14 and f18. Each point on the graph is the average over 25 independent runs.
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