
Cooperative Co-evolution with a New
Decomposition Method for Large-Scale

Optimization

Sedigheh Mahdavi
Department of Mathematics and

Computer Science
Amirkabir University of Technology

Tehran, Iran
s_mahdavi@aut.ac.ir

Mohammad Ebrahim Shiri
Department of Mathematics and

Computer Science
Amirkabir University of Technology

Tehran, Iran
shiri@aut.ac.ir

Shahryar Rahnamayan
Faculty of Engineering and Applied

Science of Ontario
 Institute of Technology (UOIT)

2000 Simcoe Street North, Oshawa,
ON L1H 7K4, Canada

Shahryar.Rahnamayan@uoit.ca

Abstract—Cooperative Co-evolutionary algorithms are effective
approaches to solve large-scale optimization problems. The crucial
challenge in these methods is the design of a decomposition method
which is able to detect interactions among variables. In this paper,
we proposed a decomposition method based on High Dimensional
Model Representation (HDMR) which extracts separable and
nonseparable subcomponents for Cooperative Co-evolutionary
algorithms. The entire decomposition procedure is conducted
before applying the optimization. The experimental results for
D=1000 on twenty CEC-2010 benchmark functions show that the
proposed method is promisingly efficient to solve large-scale
optimization problems. The proposed approach is compared with
two other methods and discussed in details.

I. INTRODUCTION
HE real-world optimization problems are faced with

several challenging features, such as, landscape’s shape
complexity, high dimensionality, nonlinearity, concavity,

uncertainty, and expensive objective evaluation. Many
metaheuristic algorithms have been proposed to tackle these
kinds of problems. The performance of these algorithms
severely deteriorates when the dimension of the search space
increases. Cooperative Coevolution (CC) algorithms [1, 2]
have been proposed to handle the problems with a large
number of decision variables. These algorithms consider
decomposition methods to tackle a high dimensional problem.
In the classical CC method, a high-dimensional decision vector
is divided into some low-dimensional subcomponents/vectors.
The classical CC methods are inefficient for handling
nonseparable problems since they do not take into account to
identify the interactions among variables. In separable
problems, there is no interaction among variables; therefore it
is possible to decompose it easily into several low-dimensional
subcomponents. But, the nonseparable problems consist of
interacting subcomponent variables. The efficiency of the CC
algorithms deteriorate when interacting variables are placed in
different subcomponents, because the influence of a variable
on the fitness value in one subcomponent depends on other

variables in different subcomponents; and subcomponents
cannot be evolved independently. The ideal grouping method
in CC algorithms should decompose a high dimensional
problem into several subcomponents such that the interactions
among different subcomponents are minimal [3, 4]. It was
shown that decomposition methods have a significant influence
in the performance of the CC algorithms [3]. Therefore, the
crucial challenge in the success of CC algorithms is developing
a suitable decomposition method with a higher interaction
recognition success rate.

In recent years, several decomposition methods for the CC
algorithms have proposed to identify interacting variables for
constructing the subcomponents of a large-scale problem. Two
major categories of these methods, in term of the variable
grouping strategy, are static and dynamic decomposition
methods. In the static decomposition methods, the associated
variables to each subcomponent are kept fixed during the
optimization process while in the dynamic decomposition
methods, grouping changes during the optimization.

The High Dimensional Model Representation (HDMR)
[14, 15] is a general set of quantitative model assessment and
analysis tool which has been introduced to capture high-
dimensional input– output system behavior. HDMR represents
a map of the relationship between input and output system
variables. Since the general assumption in the CC methods is
that there is no available information about the problem (i.e.,
black-box function), it would be useful to obtain some
significant knowledge of a problem via HDMR for discovering
unknown better arrangement of subcomponents.

In the paper, a new decomposition method for the CC
algorithms is proposed based on HDMR method (DM-HDMR)
which discovers nonseparable and separable subcomponents to
improve the performance of CC algorithms. First, we
approximate a black-box function using a RBF-HDMR
approach, proposed by Shan and Wang [5], and then the
interactions among variables based on the first order RBF-
HDMR are detected and the separable and nonseparable
subcomponents are constructed. The DM-HDMR is tested on

T

1285

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

20 high-dimensional (i.e., D=1000) benchmark functions. The
obtained results indicate that the proposed approach is highly
efficient.

The organization of the rest of this paper is as follows.
Section II presents a background review. Section III describes
the details of the proposed decomposition method. Section IV
presents the experimental results and discussion. Finally, the
paper is concluded in Section V.

II. BACKGROUND REVIEW

A. Decomposition Methods
Potter and De Jong [2] proposed two basic CC algorithms

in 1994, they proposed the one-dimensional based strategy and
splitting-in-half decomposition strategy. In one-dimensional
based strategy, an n-dimensional problem is decomposed into n
one-dimensional subcomponents. In each subcomponent, the
fitness of an individual is computed by an n-dimensional vector
which is constructed by this individual and the selected
members of other subcomponents. In the second strategy, an n-
dimensional problem is decomposed into two n/2
subcomponents. It was confirmed that the performance of CC
algorithms depend on identifying interactions among variables
and the efficiency of the methods drops when solving
nonseparable problems [6].

Recently, a random decomposition method (DECC-G) was
introduced by Yang et al. to handle the high-dimensional
nonseparable problems (tested up to 1000D) [4]. In the random
decomposition method, an n-dimensional problem is
decomposed randomly into multiple low-dimensional
subcomponents. They used an adaptive weighting strategy to
obtain better solutions. When the number of interacting
variables grows, the performance of DECC-G method
decreases. In [7], a self-adaptive decomposition method
(MLCC) was proposed. MLCC utilizes different
subcomponent sizes of a decomposer pool to identify variant
interaction levels. A drawback of MLCC is that the problem is
decomposed into a set of equal size subcomponents.

The correlation matrix based methods were proposed to
form subcomponents [8, 9]. These algorithms calculate
correlations among the variables in each generation and
variables are placed in the separate subcomponents according
to the computed correlations. In these methods, the huge
computational resources are used and the nonlinear
dependencies among the variables are not detected. In [10], the
delta decomposition method was proposed in which a problem
is decomposed based on the absolute amount of change in each
dimension at two sequential cycles. When the problem includes
multiple nonseparable components, the efficiency of this
method deteriorates accordingly. Chen et al. [11] introduced a
CC method with Variable Interaction Learning (CCVIL) to
determine the structure of subcomponents and to adjust the
component size. They incorporated a learning stage in CC
algorithm which is capable to detect the interactions among the
decision variables. In [12, 13] , the dependency identification
(DI) techniques were proposed; they define an internal
minimization problem according to the concept of partially
separable function during the CC algorithm. Omidvar et al. [3]

introduced an automatic decomposition approach (DECC-DG),
differential grouping, based on the description of the partial
separable functions. In DECC-DG method, the nonseparable
subcomponents are identified in a pairwise fashion. A theorem
is defined and proved to identify the interactions among two
variables. This theorem shows that if the change in the
objective function with respect to one variable depends on
another variable, then two variables are nonseparable.

B. High Dimensional Model Representation (HDMR)
A general form of HDMR is given as follows [14, 15]:

() () () ()∑ ∑
=

<
=

++++=
N

i

N

ii
ii

NNiiiiiiN xxfxxfxffxxf
1 1,

112301
1

21

21

212111
,,,,, …"… …

where the component 0f is a constant representing the zero-th
order effect to)(xf ; the function)(ii xf is a first order term

giving the effect of variable ix acting independently upon the

output)(xf ; the function),(jiij xxf is a second order term

describing the cooperative effects of the variables ix and jx

upon the output)(xf . The higher order terms reflect the
cooperative effects of increasing numbers of input variables
acting together to influence the output)(xf .

We apply the RBF-HDMR which was recently introduced
by Shan and Wang [5]. They used a type of RBF function
which uses a sum of a thin plate spline function (the first term)
and a linear polynomial)(xP (the second term) to
approximate each component function in the special class of
HDMR, i.e., Cut-HDMR. A general RBF-HDMR is given by:

() () () () ()

k

m

k
d

ij
kji

ij
ji

k dji

m

k
ij

i
i

i
ii

N

i
N

xx

xxxxxxxxxxfxxf

ij

k

k

im ij

kkk

−++

−+−+=

∑

∑ ∑∑∑

=

= ≤≤ ==

1
,........2,1

00
1 1 1

00
1

01

............

,,,,,,,,

α

αα
≺

…

Where
kkk diji ,........2,1,...,, ααα are the coefficients of the

expression and () () k
ij

kji
i

i xxxxxx
kk

,...,,,, 00 are the sampled
points of input variables or the centers of a linear RBF
approximation. They proposed strategies to save the cost of
constructing higher order components in HDMR. In the second
order RBF-HDMR model, there is a cooperative effect of the
variables ix and jx if the first RBF-HDMR model passes
through randomly selected points from the set of sampled
points which used to construct the first-order component terms

if and jf . Base on the mentioned strategy, we proposed a
new decomposition method by using the first RBF-HDMR
model.

1286

Fig. 1. The simplified flow of the DM-HDMR process

III. PROPOSED DM-HDMR DECOMPOSITION METHOD
A major challenge in CC methods is the design of a

suitable decomposition method which can recognize
interactions among variables [3, 12]. There are the drawbacks
of existing research works in constructing separable and
nonseparable subcomponents hence the essential requirement
for the design of a decomposition strategy is desirable. In this
paper, a decomposition method based on HDMR (DM-
HDMR) is proposed which is described as follows. Figure 1
shows a simplified flow of the DM-HDMR process.

The key feature of RBF-HDMR model is modeling high-
dimensional problems. We propose the idea of employing
RBF-HDMR model to extract interactions among variables.
Algorithm1 shows that how the RBF-HDMR model can be
used to identify the interacting variables and to create the
nonseparable and separable subcomponents. At the beginning
of the DM-HDMR algorithm, the first-order RBF-HDMR
model is computed based on the mentioned algorithm in [5].
The decomposition step starts by discovering interacting
variables with the first variable and then its corresponding
subcomponent is formed. In the DM-HDMR algorithm, two
variables are recognized as nonseparable if for constructing the
second-order RBF-HDMR model a cooperative effect of two
variables is identified according to the Shan and Wang’s
strategy. For variables ix and jx , two points are randomly
selected from a point set which is formed based on all sample
values of the variables ix and jx for modeling the first-order

term of components if and jf .

In the DM-HDMR algorithm, when an interaction among a
variable with first variable is detected, this variable is placed in
the first variable subcomponent and then it is removed from the
set of all variables. This process is repeated for other remaining
variables until there is no more variable left. A variable is

recognized as a separable variable if there is no interaction
among it with all remaining variables.

Algorithm1: allgroups decomposition (func, n)
1. dims {1,2,….,n}
2. sep {} // contains all separable variables
3. Allgroups {}

//contains all non-separable subcomponents
4. Create the first RBF-HDMR(i.e.,

() () ()∑∑
==

−+=
im

kk
k

i
i

i
ii

d

i
N xxxxfxxf

1
00

1
01 ,,,, α…

according to Shang and Wang’ algorithm
5. for i ∈ dims do
6. group {}
7. for j ∈ dims ∧ i ≠ j do
8. select a random point from the sampled set

of points for constructing the first-order
component term components fi and fj

9. if (the first RBF-HDMR model does not
pass through a selected random point)
then

10. group group ∪ j
11. end if
12. end for
13. dims dims- group
14. if length (group)==1 then
15. seps seps ∪ group
16. Else
17. allgroups allgroups ∪ { group }
18. end if
19. end for

1287

Administrator
Highlight

A. Combining DM-HDMR Decomposition Algorithm
with CC

Algorithm 2 explains how the DM-HDMR decomposition

algorithm is used in a CC framework. The basic CC framework
[1, 2] is applied in this algorithm. In the first step, DM-HDMR
constructs nonseparable and separable subcomponents. Then,
all subcomponents are optimized in a round-robin fashion by
Self-adaptive Differential evolution with neighbourhood search
strategy (SaNSDE) [4].

IV. EXPERIMENTAL RESULTS
The twenty benchmark functions are used to evaluate the

performance of DM-HDMR method. These functions were
provided by the CEC-2010 Special Session and Competition
on LSGO [16]. In this benchmark test set, there are five types
of functions:

1- Separable functions (f1-f3)

2- Single-group m-nonseparable functions (f4-f8)

f4: Single-group Shifted and m -rotated Elliptic Function.

f5: Single-group Shifted and m -rotated -rotated Rastrigin’s
Function.

f6: Single-group Shifted and m -rotated Ackley’s Function.

f7: Single-group Shifted and m-rotated Schwefel’s Problem
1.2

f8: Single-group Shifted and m -rotated Rosenbrock’s
Function.

3-
m
n

2
-group m -nonseparable functions (f9-f13)

4-
m
n

- group m -nonseparable functions(f14-f18)

5- Nonseparable functions (f19-f20)

Where n is the dimensionality of the function and m is the
number of variables in each nonseparable subcomponent.

A. Simulation Results
Table I summarizes the experimental results for CCVIL,
DECC-DG, and DM-HDMR methods. The grouping accuracy
is computed similar to the research work [3] . It can be found
that the decomposition accuracy for 12 out of 20 benchmark
functions is 100%. In three fully separable functions (f1-f3), all
variables are placed in a subcomponent. The DM-HDMR
algorithm correctly recognized all the decision variables fully
separable.

Algorithm2: allgroups decomposition (func, n)
1. pop initialize (popsize, n)
2. groups DG-HDMR(func, n)
3. (best,best val) evaluate(pop)
4. for i 1 to max_cycle do
5. for j 1 to length (groups) do
6. index_subpop groups[j]
7. subpop pop(: , index_subpop)
8. (subpop,new) optimizer(best, subpop)
9. pop(: , index_subpop) subpop
10. best new
11. end for
12. end for

In single-group m -nonseparable functions, the
decomposition accuracy for 2 (i.e., f5, f6) out of these 5
functions is 100%. On f7, the algorithm has obtained the
nonseparable subcomponent approximately correct with little
difference with the real nonseparable subcomponent while it
only could not identify six nonseparable variables. For f4,
identifying interactions among variables is poor and the
algorithm cannot discover correctly nonseparable
subcomponents. The nonseparable variables are found
correctly in f8 but separable variables were misplaced.

For the third type of benchmark functions (f9-f13), where
there are 10 independent 50-nonseparable subcomponents and
one separable subcomponent with 500 variables, the
decomposition accuracy for 3 functions (f9, f10, and f12) out of
5 functions is 100%. The performance of DM-HDMR
algorithm is significant on f11 and most nonseparable variables
are discovered.For f13, the captured interacting variables are not
correct. In fully nonseparable functions (f14-f20), it has the high
performance for all functions except on f18 so that the accuracy
of interacting variables is 100% for functions f14, f17, and f19-f20.

We have also compared the performance of the DM-
HDMR algorithm with two other state-of-the-art methods,
namely, CCVIL and DECC-DG methods. The results confirm
that the CCVIL achieves better results than DM-HDMR and
DECC-DG on f4 and f7. For f1, f2, and f5; CCVIL has the same
results with DM-HDMR and DECC-DG while the
performance of DM-HDMR and DECC-DG is better than
CCVIL on other functions. The performance of DM-HDMR
and DECC-DG deteriorates significantly on most Rosenbrock
functions (f8, f13, f18) while DM-HDMR obtains the remarkable
result on f20. Also, DM-HDMR and DECC-DG have the
deficient result on f4 although the accuracy of DECC-DG is
100% for constructing nonseparable subcomponent. On f11 and
f16, DECC-DG outperforms DM-HDMR. Both DM-HDMR
and DECC-DG algorithms have approximately same results on
other functions.

1288

TABLE I
 NUMERICAL RESULTS OF DM-HDMR, DECC-DG, AND CCVIL

THE SYMBOL ‘‡’ IS USED TO INDICATE WHICH ALGORITHMS HAVE THE SAME RESULT
AND THE BEST VALUE IS FORMATTED IN BOLD.

Fun Sep.
Var.s

Non-sep.
Var.s

Decomposition
strategy

Captured
Sep. Vars.

Captured
Non-Sep.Var.s # FE

f1 1000 0
CCVIL 1000‡ 0‡ 69990

DECC-DG 1000‡ 0‡ 1001000
DM-HDMR 1000‡ 0‡ 516304

f2 1000 0
CCVIL 1000‡ 0‡ 69990

DECC-DG 1000‡ 0‡ 1001000
DM-HDMR 1000‡ 0‡ 567231

f3 1000 0
CCVIL 938 0‡ 1798666

DECC-DG 1000‡ 0‡ 1001000
DM-HDMR 1000‡ 0‡ 709487

f4 950 50
CCVIL 957 43 1797614

DECC-DG 33 50 14564
DM-HDMR 0 2 17642

f5 950 50
CCVIL 950‡ 50‡ 1795705

DECC-DG 950‡ 50‡ 905450
DM-HDMR 950‡ 50‡ 516300

f6 950 50
CCVIL 910 47 1796370

DECC-DG 950‡ 50‡ 906332
DM-HDMR 950‡ 50‡ 653926

f7 950 50
CCVIL 951 49 1796475

DECC-DG 247 34 67250
DM-HDMR 948 47 468479

f8 950 50
CCVIL 1000 0 69842

DECC-DG 135 46 23608
DM-HDMR 0 50 29099

f9 500 500
CCVIL 583 337 1792212

DECC-DG 500‡ 500‡ 270802
DM-HDMR 500‡ 500‡ 150445

f10 500 500
CCVIL 508 492 1774642

DECC-DG 500‡ 500‡ 272958
DM-HDMR 500‡ 500‡ 184431

f11 500 500
CCVIL 476 491 1774565

DECC-DG 501 499 270640
DM-HDMR 503 428 293933

f12 500 500
CCVIL 516 435 1777344

DECC-DG 500‡ 500‡ 271390
DM-HDMR 500‡ 500‡ 149824

f13 500 500
CCVIL 1000 0 69990

DECC-DG 131 126 49470
DM-HDMR 548 28 333903

f14 0 1000
CCVIL 150 719 1785975

DECC-DG 0‡ 1000‡ 21000
DM-HDMR 0‡ 1000‡ 24725

f15 0 1000
CCVIL 1000 0 1751241

DECC-DG 0 1000 21000
DM-HDMR 1 999 40163

f16 0 1000
CCVIL 1000 0 1751647

DECC-DG 4 996 21128
HDMR 6 950 98899

f17 0 1000
CCVIL 1000 0 1752340

DECC-DG 0‡ 1000‡ 21000
DM-HDMR 0‡ 1000‡ 23198

f18 0 1000
CCVIL 1000 0 69990

DECC-DG 85 173 34230
DM-HDMR 1 50 22952

f19 0 1000
CCVIL 1000 0 48212

DECC-DG 0‡ 1000‡ 2000
DM-HDMR 0‡ 1000‡ 8960

f20 0 1000
CCVIL 1000 0 1798708

DECC-DG 42 82 22206
DM-HDMR 0 1000 22823

1289

Table II presents the detail of the subcomponents on a
number of functions which are found by DM-HDMR. The
Groups column presents a constructed nonseparable
subcomponent by DM-HDMR. The Permutation Groups
column shows permutation subcomponents (P1-P20) which
includes indices of 50 randomly chosen dimensions and the
next column beside it indicates the number of variables belong
to each permutation subcomponent.

Table III shows the experimental results for a cooperative
co-evolution algorithm with DM-HDMR. The mean values and
the standard deviation of best objective value of the 25 runs in
each run at 6103× FEs per function. The experimental results
were compared with the results of DECC-DG. The symbol ‘‡’
is used to indicate which both algorithms have same results and
the best value is highlighted in bold.

The results confirm that in fully separable functions class,
the CC method with DM-HDMR gained much better results
than DECC-DG on f1 and f2. The reason is that DM-HDMR
can save a significant number of fitness evaluations in the

decomposition step. On f3, both algorithms have the same
results.

In the second class, the CC method with DM-HDMR
outperforms DECC-DG on f4-f6, while the results of DECC-DG
are better than the CC method with DM-HDMR on f7-f8. In the
third class (f9-f13), the performance of DM-HDMR is better
than DECC-DG on f9-f10,f12-f13 although DECC-DG
outperforms DM-HDMR on f11. In the fully nonseparable
functions, DECC-DG outperforms the CC method with DM-
HDMR on f15-f17 while the results of the CC method with DM-
HDMR are better than DECC-DG on f18 and f20. The
performance of both algorithms is the same on f14 and f19. It
can be seen from Table III that DM-HDMR on f1-f2, f5-f6, f9-f10,
and f12 outperforms DECC-DG because by saving the number
of fitness evaluations in the decomposition step, DM-HDMR
can use more significant number of fitness evaluations in the
optimization stage. In the figure 2, the convergence plots for
selected function indicated the behavior of both DM-HDMR
and DECC-DG algorithms.

TABLE II
The nonseparable subcomponents are constructed by DM-HDMR.

Func Groups Group
Size

Permutation
Groups #var Func Groups Group

Size
Permutation

Groups #var

f17

G01 50 P9 50

f4
G01 998

P1 48
G02 50 P7 50 P2 50
G03 50 P2 50 P3 50
G04 50 P12 50 P4 50
G05 50 P4 50 P5 50
G06 50 P20 50 P6 50
G07 50 P5 50 P7 50
G08 50 P18 50 P8 50
G09 50 P10 50 P9 50
G10 50 P15 50 P10 50
G11 50 P1 50 P11 50
G12 50 P8 50 P12 50
G13 50 P17 50 P13 50
G14 50 P11 50 P14 50
G15 50 P14 50 P15 50
G16 50 P3 50 P16 50
G17 50 P13 50 P17 50
G18 50 P19 50 P18 50
G19 50 P6 50 P19 50
G20 50 P16 50 P20 50

f11

G01 43 P4 43 G02 2 P1 2
G02 47 P6 47

f10

G01 50 P4 50
G03 48 P3 48 G02 50 P6 50
G04 46 P1 46 G03 50 P3 50
G05 45 P5 45 G04 50 P1 50
G06 37 P9 37 G05 50 P5 50
G07 45 P2 45 G06 50 P9 50
G08 27 P8 27 G07 50 P2 50
G09 47 P7 47 G08 50 P8 50
G10 39 P10 39 G09 50 P7 50
G11 2 P8 2 G10 50 P10 50
G12 2 P6 2 f5 G01 50 P1 50
G13 2 P9 2 f6 G01 50 P1 50

1290

TABLE III
 COMPARISON OF CC METHOD WITH EMBEDDED DM-HDMR AND

DECC-DG METHODS ON THE CEC-2010 BENCHMARK FUNCTIONS.

Function DM-HDMR DECC-DG

f1
Mean 2.34e+01 5.47e+03
Std 5.23e+01 2.02e+04

f2 Mean 4.36e+03 4.39e+03
Std 1.97e+02 1.97e+02

f3 Mean 1.67e+01‡ 1.67e+01‡

Std 3.03e-01 3.34e-01
f4 Mean 6.96e+11 4.79e+12

Std 2.12e+11 1.44e+12
f5 Mean 1.45e+08 1.55e+08

Std 1.78e+07 2.17e+07
f6 Mean 1.63e+01 1.64e+01

Std 4.08e-01 2.71e-01
f7 Mean 2.91e+05 1.16e+04

Std 2.26e+05 7.41e+03
f8 Mean 4.41e+07 3.04e+07

Std 2.44e+07 2.11e+07
f9 Mean 5.20e+07 5.96e+07

Std 8.21e+06 8.18e+06
f10 Mean 4.49e+03 4.52e+03

Std 1.40e+02 1.41e+02
f11 Mean 1.10e+01 1.03e+01

Std 9.94e-01 1.01e+00
f12 Mean 1.97e+03 2.52e+03

Std 3.15e+02 4.86e+02
f13 Mean 3.35e+06 4.54e+06

Std 6.83e+05 2.13e+06
f14 Mean 3.41e+08‡ 3.41e+08‡

Std 2.60e+07 2.41e+07
f15 Mean 5.95e+03 5.88e+03

Std 9.11e+01 1.03e+02
f16 Mean 1.24e-06 7.39e-13

Std 1.92e-06 5.70e-14
f17 Mean 4.03e+04 4.01e+04

Std 3.19e+03 2.85e+03
f18 Mean 8.40e+03 1.11e+10

Std 4.35e+03 2.04e+09
f19 Mean 1.71e+06‡ 1.74e+06‡

Std 1.38e+04 9.54e+04
f20 Mean 2.45e+06 4.87e+07

Std 1.23e+07 2.27e+07

V. CONCLUSION REMARKS
In this paper, we proposed a decomposition method

inspired from the High Dimensional Model Representation to
discover the optimum grouping of the variables for dividing a
high dimensional problem into low subcomponents. Significant
information can be obtained by constructing the first order
RBF-HDMR which is used to determine a cooperative effect of
two variables then the separable and nonseparable
subcomponents are recognized according to the detected
cooperative effect among variables. The DM-HDMR algorithm
suggests a promising idea for decomposition methods to handle
large-scale problems within cooperative coevolution methods
however the further study and more experiments are required
to improve this decomposition method. The performance of the
DM-HDMR algorithm is evaluated on the CEC-2010
challenging well-known benchmark functions. The DM-
HDMR algorithm obtained comparable good results in the
majority of functions. Also, a cooperative co-evolutionary
framework with using DM-HDMR method was proposed for
tackling large-scale optimization problems. Based on the
achieved results, it can be concluded that the algorithm can

efficiently solve large-scale optimization problems. In future,
we intend to develop strategies based on HDMR to better
divide the computational budget in a CC algorithm among
subcomponents with respect the main effect of theirs variables
on the fitness function. In addition, we are interested in
applying DM-HDMR to more large-scale benchmark
functions.

REFERENCES
[1] M. A. Potter, "The design and analysis of a

computational model of cooperative coevolution,"
Citeseer, 1997.

[2] M. A. Potter and K. A. De Jong, "A cooperative
coevolutionary approach to function optimization," in
Parallel Problem Solving from Nature—PPSN III,
ed: Springer, 1994, pp. 249-257.

[3] M. N. Omidvar, X. Li, Y. Mei, and X. Yao,
"Cooperative Co-evolution with Differential
Grouping for Large Scale Optimization," methods,
vol. 3, p. 5.

[4] Z. Yang, K. Tang, and X. Yao, "Large scale
evolutionary optimization using cooperative
coevolution," Information Sciences, vol. 178, pp.
2985-2999, 2008.

[5] S. Shan and G. G. Wang, "Metamodeling for high
dimensional simulation-based design problems,"
Journal of Mechanical Design, vol. 132, p. 051009,
2010.

[6] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, "Scaling up
fast evolutionary programming with cooperative
coevolution," in Evolutionary Computation, 2001.
Proceedings of the 2001 Congress on, 2001, pp.
1101-1108.

[7] Z. Yang, K. Tang, and X. Yao, "Multilevel
cooperative coevolution for large scale optimization,"
in Evolutionary Computation, 2008. CEC
2008.(IEEE World Congress on Computational
Intelligence). IEEE Congress on, 2008, pp. 1663-
1670.

[8] T. Ray and X. Yao, "A cooperative coevolutionary
algorithm with correlation based adaptive variable
partitioning," in Evolutionary Computation, 2009.
CEC'09. IEEE Congress on, 2009, pp. 983-989.

[9] H. K. Singh and T. Ray, "Divide and Conquer in
Coevolution: A Difficult Balancing Act," in Agent-
Based Evolutionary Search, ed: Springer, 2010, pp.
117-138.

[10] M. N. Omidvar, X. Li, and X. Yao, "Cooperative co-
evolution with delta grouping for large scale non-
separable function optimization," in Evolutionary
Computation (CEC), 2010 IEEE Congress on, 2010,
pp. 1-8.

[11] W. Chen, T. Weise, Z. Yang, and K. Tang, "Large-
scale global optimization using cooperative
coevolution with variable interaction learning," in
Parallel Problem Solving from Nature, PPSN XI, ed:
Springer, 2010, pp. 300-309.

1291

[12] E. Sayed, D. Essam, and R. Sarker, "Using hybrid
dependency identification with a memetic algorithm
for large scale optimization problems," in Simulated
Evolution and Learning, ed: Springer, 2012, pp. 168-
177.

[13] E. Sayed, D. Essam, and R. Sarker, "Dependency
Identification technique for large scale optimization

problems," in Evolutionary Computation (CEC),
2012 IEEE Congress on, 2012, pp. 1-8.

[14] H. Rabitz and Ö. F. Aliş, "General foundations of
high‐dimensional model representations," Journal

of Mathematical Chemistry, vol. 25, pp. 197-233,
1999.

[15] I. Sobol, "Theorems and examples on high
dimensional model representation," Reliability
Engineering & System Safety, vol. 79, pp. 187-193,
2003.

[16] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T.
Weise, "Benchmark functions for the CEC’2010
special session and competition on large-scale global
optimization," Nature Inspired Computation and
Applications Laboratory, USTC, China, 2009.

(a) f1
(b) f4

(c) f9
(d) f12

(e) f14
(f) f18

Fig. 2. Convergence plots of f1, f4, f9, f12, f14 and f18. Each point on the graph is the average over 25 independent runs.

1292

